Bar k-Visibility Graphs

نویسندگان

  • Alice M. Dean
  • William S. Evans
  • Ellen Gethner
  • Joshua D. Laison
  • Mohammad Ali Safari
  • William T. Trotter
چکیده

Let S be a set of horizontal line segments, or bars, in the plane. We say that G is a bar visibility graph, and S its bar visibility representation, if there exists a one-to-one correspondence between vertices of G and bars in S, such that there is an edge between two vertices in G if and only if there exists an unobstructed vertical line of sight between their corresponding bars. If bars are allowed to see through each other, the graphs representable in this way are precisely the interval graphs. We consider representations in which bars are allowed to see through at most k other bars. Since all bar visibility graphs are planar, we seek measurements of closeness to planarity for bar k-visibility graphs. We obtain an upper bound on the number of edges in a bar k-visibility graph. As a consequence, we obtain an upper bound of 12 on the chromatic number of bar 1-visibility graphs, and a tight upper bound of 8 on the size of the largest complete bar 1-visibility graph. We also consider the thickness of bar k-visibility graphs, obtaining an upper bound of 4 when k = 1, and a bound that is quadratic in k for k > 1. Article Type Communicated by Submitted Revised Regular paper S. Whitesides April 2005 May 2006 A. Dean et al., Bar k-Visibility Graphs, JGAA, 11(1) 45–59 (2007) 46

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Visibility Graphs — Upper Bounds and Classification of Special Types

We examine several types of visibility graphs: bar and semi-bar k-visibility graphs, rectangle k-visibility graphs, arc and circle k-visibility graphs, and compact visibility graphs. We improve the upper bound on the thickness of bar k-visibility graphs from 2k(9k − 1) to 6k, and prove that the upper bound must be at least k + 1. We also show that the upper bound on the thickness of semi-bar k-...

متن کامل

Further results on arc and bar k-visibility graphs

We consider visibility graphs involving bars and arcs in which lines of sight can pass through at most k objects. We prove a new edge bound for arc k-visibility graphs, provide maximal constructions for arc visibility graphs and semi-arc k-visibility graphs, and give a complete characterization of semi-arc visibility graphs. We further show that the family of arc i-visibility graphs is never co...

متن کامل

More directions in visibility graphs

In this paper we introduce unit bar k-visibility graphs, which are bar kvisibility graphs in which every bar has unit length. We show that almost all families of unit bar k-visibility graphs and unit bar k-visibility graphs are incomparable under set inclusion. In addition, we establish the largest complete graph that is a unit bar k-visibility graph. As well, we present a family of hyperbox vi...

متن کامل

Bar k-Visibility Graphs: Bounds on the Number of Edges, Chromatic Number, and Thickness

Let S be a set of horizontal line segments, or bars, in the plane. We say that G is a bar visibility graph, and S its bar visibility representation, if there exists a one-to-one correspondence between vertices of G and bars in S, such that there is an edge between two vertices in G if and only if there exists an unobstructed vertical line of sight between their corresponding bars. If bars are a...

متن کامل

Parameters of Bar k-Visibility Graphs

Bar k-visibility graphs are graphs admitting a representation in which the vertices correspond to horizontal line segments, called bars, and the edges correspond to vertical lines of sight which can traverse up to k bars. These graphs were introduced by Dean et al. [4] who conjectured that bar 1-visibility graphs have thickness at most 2. We construct a bar 1-visibility graph having thickness 3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Graph Algorithms Appl.

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2007